AlBalqa Applied University Faculty of Medicine 2nd semester 2020

31501261/ Principles of Genetics and Molecular Biology (3 credit hours) **References:**

1. Textbook of Biochemistry with Clinical Correlations, 7th Edition

Thomas M. Devlin.

 Essentials of Genetics 7th. Ed. 2010 William S. Klug, Michael R. Cummings, Charlotte A. Spencer & Michael A. Palladino Publisher :PEARSON

Instructor:

Dr. Nabil Amer

Course Description and Objectives:

Objectives of this course are designed to understand the basic principles of molecular Biology and Molecular Genetics. Emphasis will be given to those principles that have application in medical practice. The structure of DNA and RNA as genetic material, DNA organization and its replication, mutation and repair in both prokaryotes and eukaryotes will be covered. Furthermore, gene expression will also be discussed. Finally, the course will cover some aspects of cancer genetics, cytogenetics and molecular biology techniques.

Molecular genetics is one of the most rapidly advancing fields of medicine and is now integral to all aspects of biomedical science. Every physician who practices in the 21st century will require a basic knowledge of the principles of molecular genetics and their application to a wide variety of clinical problems .

The practice of modern medicine includes recognition of the role of genetic factors in health and disease. This requires knowledge of the structure, function, and transmission of genes and understanding of interactions both among genes, and between genes and the environment .

The following outline lists the objectives of the course material in Molecular medical genetics .

Students in Molecular genetics at BAU should know and understand :

- 1. What are genes and how they are organized .
- 2. How genes are arranged in chromosomes and how chromosomes replicate.
- **3.** How genes are transmitted from parent to child, how genes segregate, and the patterns of inheritance for dominant and recessive, autosomal and X-linked traits.
- 4. The nature of mutations and how they are repaired, and how they contribute to human variability and disease .
- 5. What genes do: the flow of genetic information from DNA to RNA to protein?
- 6. How gene expression is controlled.
- 7. The significance of the Human Genome Project to medicine.
- 8. The molecular basis of inherited disease.
- 9. The role of genetics in the pathogenesis of neoplasms and in the predisposition to malignancies.
- 10. The multifactorial nature of most human traits and the principles of multifactorial inheritance.

- 11. The clinical manifestations of the common chromosomal anomalies.
- 12. Common molecular and cytogenetic diagnostic techniques and how they are applied to genetic disorders

Assessment :

<u>MIDTERM EXAM</u>: there will be 50 multiple choice questions for 50% of the total <u>FINAL COMPREHENSIVE EXAM</u>: there will be 50 multiple choice questions (40 of them from the part that you were not examined in + 10 questions from the material of the midterm exam) for 50% of the total

Lecture #	Date	Торіс	Outlines	Instructor
1	Sunday	Structure Of Nucleic Acids I	General Base pairs Double helix B-DNA helix vs. A-DNA helix Z-DNA helix ABZ Summary	
2	Tuesday	Structure Of Nucleic Acids II	a). Genetic dogma b). forces that affect DNA double helical stability	
3	Thursday	Structure Of Nucleic Acids III	c). Complexity of chromosomal DNA i). DNA denaturation ii). Repetitive DNA and Alu sequences	
4	Sunday	Structure of genes and chromosomes I	iii). Genome size and complexity of genomic DNAd). Gene structurei). Introns and exons	
5	Tuesday	Structure of genes and chromosomes II	 ii). Properties of the human genome iii). Mutations caused by Alu sequences e). Chromosome structure - packaging of genomic DNA i). Nucleosomes ii). Histones iii). Nucleofilament structure 	
6	Thursday	DNA Replication I	 DNA Replication Mechanisms DNA Polymerase structure (Klenow fragment) 	
7	Sunday	DNA Replication II	 Metal ions in catalysis Primase priming 	
8	Tuesday	DNA Replication III	 DNA ligase catalysis Helicase SSB, Topoisomerase DNA Polymerase III holoenzyme Sliding clamp Replication fork Okazaki fragments / Leading/lagging considerations Leading/lagging strand "trombone" coordination Topological Considerations Topoisomers (relaxed versus supercoiled) Linking, Twisting, Writhing) Topoisomerases - enzymes affecting DNA topology 	

			 Topoisomerase I Topoisomerase II /Inhibitors Replication Initiation <i>E. coli</i> replication origin Binding of dnaA Pre-priming complext - dnaA, dnaB, dnaC, dnaG, beta Clamp DNA polymerases Eukaryotic cell cycle Telomere formation Shortening
9	Thursday	DNA Recombination	 Scheme Strand Invasion Holliday junction
10	Sunday	Mutations and DNA repair	 DNA Damage 8-Oxoguanine-adenine base pair Adenine deamination Aflatoxin activation Thymine dimers Cross linking agent DNA Repair Proofreading Mismatch repair Nucleotide excision repair Uracil repair Huntington's disease Cancer from DNA repair defects HNPCC (Lynch syndrome) p53 damage Agents for treating damage DNA
11	Tuesday	Transcription I	RNA Polymerase
12	Thursday	Transcription II	Structures Subunits
13	Sunday	Transcription	Template versus coding strands Polymerase movement
14	Tuesday	RNA Processing I	 Promoters Prokaryotic sequences / -35 / -10 sequences
15	Thursday	RNA Processing II	 Alternative promoters - governed by sigma factors Prokaryotic RNA Synthesis Transcription bubble Termination signal Stem loop FMN-specific termination Rho protein Antibiotic inhibition Rifampicin / Site of action - elongation blocker Actinomycin D (binds DNA double helix

r	
	 tRNA and rRNA Processing in prokaryotes
	 Ribonuclease P (generates 5' terminus
	of tRNAs)
	 Ribonuclease III (excises 5S, 16S, 23S
	rRNAs from primary transcript)
	 CCA addition to tRNAs
	 Base modifications
	 Uridylate modifications
Euk	aryotic RNA Synthesis
	 Transcription/Translation - Prokaryotes vs.
	Eukaryotes
	RNA Polymerases
	Amanitin structure and source
	Promoter elements
	Eukaryotic TATA box / CAAT and GC boxes
	Transcription Initiation
	 TATA-binding protein - DNA complex
	Transcription factor HSTF
	 Sequence recognized = 5'
	CNNGAANNTCCNNG 3'
	-
	Enhancer sequences
	 No promoter activity of own Act up to several thousand by away
	 Act up to several thousand bp away
	from gene
	 Act upstream, downstream, in middle of
	gene, and orientation independent
	• Specific to specific cells
	Eukaryotic rRNA
	 Made by RNA Polymerase I as pre-
	rRNA and
	Eukaryotic tRNA
	 Made by RNA Polymerase III
	• Processing
	Eukaryotic mRNA
	 Made by RNA Polymerase II
	 Capping 5' end of mRNAs
	Polyadenylation 3' end of mRNAs
	microRNAs
	 made by RNA Pol II or III
	 processed from larger precursors
	 roles in controlling gene expression
	RNA editing
	 apo B-100/apo B-48
	 Cation channel proteins
	 Trypanosomes (insertion of uridines
	after transcription using guide RNAs)
	Splicing
	o Sites
	 Splicing mechanism
	 Lariat branch point

r		T	1
			 Spliceosome assembly Splicing catalytic center snRNPs Transcription and processing coupled Splicing mutations and disease Thalassemia Examples Alternative splicing patterns (calcitonin/CGRP - Self splicing intron Schematic Splicing pathway comparisons
16	Sunday	Regulation Of Gene Expression I	Prokaryotes Sequences, Proteins, and Regulation • Lac regulatory site
17	Tuesday	Regulation Of Gene Expression II	 Ide regressor/DNA interaction Helix-Turn-Helix / Beta Strands & DNA B-galactosidase induction in cell B-galactosidase catalytic action on lactose / Action on X-Gal Operons <i>lac</i> operons structure Allolactose / IPTG <i>lac</i> operon repressed / <i>lac</i> operon induced <i>E. coli</i> binding sites CAP binding Attenuation trp mRNA structure Attenuation scheme - Termination with plenty of Trp) / No Termination - low Trp Leader peptide sequences Eukaryotes Chromatin 'beads on a string' Nucleosome core particle Histone structural similarities Higher order chromatin structure Structures - Leucine Zipper / Zinc Finger Mediator Enhancer binding sites Specificity of enhancer action DNA Methylation slows transcription - Methylcytosine) Hormones and gene expression - estradiol) / All- trans-retinoic acid and thyroxine Nuclear hormone receptor Domains Ligand binding affects structure Coactivator Recruitment Tamoxifen/raloxifene structures

			 Altering chromatin structure Histone acetyltransferase catalytic activity Bromodomain proteins Chromatin remodeling Translational Regulation in Animals Ferritin structure Iron response element Transferrin receptor mRNA IRE-BP Small RNAs - microRNA action 	
18	Thursday	Translation I	General	
19	Sunday	Translation II	Ribosome structure	
20	Tuesday	Protein	Amino acid addition in translation	
		processing	Translation accuracy Genetic Code	
		and targeting	Genetic Code	
			Codon/anticodon base pairs	
			 Inosine 	
			 Allowed pairings) 	
			tRNAs	
			Codon/anticodon pairing	
			Alanine tRNA structure/sequence	
			General tRNA structure / Shape / Schematic	
			Amino Acid Activation	
			 Amino acid + ATP + tRNA + H2O -> aminboacyl- tRNA + AMP + Ppi 	
			 Aminoacyl-tRNA bond 	
			Aminoacyl-tRNA synthetases	
			 Threonyl-tRNA synthetase 	
			(Editing/activation sites	
			 Complex with threonyl-tRNA 	
			• Recognition sites on tRNA	
			Aminoacyl-tRNA synthetase classes of <i>E. coli</i> / Structures	
			 Class 1 - links to 2' hydroxyl. Most are 	
			monomeric	
			 Class 2 - links to 3' hydroxyl (except Phe- 	
			tRNA). Most are dimeric	
			Ribosomes	
			Images Difference DNA	
			Ribosomal RNA Formulation of mothioning	
			Formylation of methionineProkaryotic translation initiation sequences	
			 tRNA binding sites in the ribosome 	
			Translation Mechanism	
			Translation initiation in prokaryotes	
			Translation elongation	
			 Peptide bond synthesis 	
			 Translocation 	

			• EF-Tu	
			Termination	
			Eukaryotic Translation	
			 Initiation 	
			 Elongation 	
			 Termination 	
			 Circularization by protein interactions 	
			Antibiotics and Translation	
			Examples	
			Streptomycin - interferes with binding of	
			formylmethionyl tRNA to ribosome	
			Puromycin - causes premature termination	
			Diphtheria toxin - translocation blocking by	
			modification of elongation factor 2	
			Ricin - N-glycosidase from castor beans that	
			cleaves adenine in 28S rRNA and prevents	
			binding of elongation factors	
			Protein Transport/Secretion	
			Ribosomes in E.R.	
			Signal sequences	
			• Signal recognition particle / SRP Targeting Cycle	
			Sorting pathways	
21	Thursday	Recombinant	1.The role of restriction enzymes in recombinant DNA	N.AMER
		DNA	2.DNA cloning as a method of human gene copying	
		Techniques in	3.Polymerase chain reaction(PCR) as an amplification	
		Medicine I	method of genes in vitro	
22	Sunday	Recombinant	1.The role of restriction enzymes in recombinant DNA	N.AMER
		DNA	2.DNA cloning as a method of human gene copying	
		Techniques in	3.Polymerase chain reaction(PCR) as an amplification	
		Medicine II	method of genes in vitro	
	Tuesday	REVISION		
	3/18	MIDTERM		
	- 3/25	EXAMS		
23	Sunday	Gene	1. Probing of the gene with complementary labeled	N.AMER
		identification I	sequence	
			2.Explaining the technique of DNA blotting	
			Southern Blot	
			Northern blot	
24	Tuesday	Gene		
24	Tuesday	identification II	3.DNA sequencing	N.AMER
25	Thursday	Mendelian	Particulate inheritance	N.AMER
		Inheritance I	Genetic terminology	
			Punnet t square	
			Mendel's Pea Plant Experiments	
26	Sunday	Mendelian	Mendel's Laws	N.AMER
		Inheritance li	Mendel,s law of segregation(monohybrid cross)	
			Law of Independent Assortment	
27	Tuesday	Non-	Lethal Genotypes	N.AMER
		Mendelian	Allelic Heterogeneity	
		mendenun	,	

		Inheritance I	Incomplete Dominance Codoninance	
28	Thursday	Non-	Epistasis	N.AMER
20 11	marsaay	Mendelian	Penetrance	
		Inheritance II	Expressivity	
		innernance n	Phenocopies	
			Genetic Heterogeneity	
29	Sunday	Chromosomes	What is karyotype?	N.AMER
	contract,	Karyotyping I	Performing karyotype	
		- // - 0	Chromosome banding	
30	Tuesday	Chromosomes	What can we learn from Karyotypes?	N.AMER
	,	Karyotyping li	Abnormal Number	
		, ,, ,,	Non-disjunction	
			Deletion or Duplication	
			Translocations	
			Inversions	
31	Thursday	Chromosomal	1. Monogenic disorders	N.AMER
		anomalies I	• Autosomal	
			• Recessive	
			◦ Dominant	
			• Sex linked	
22	Curralau	<u>C11</u>		
32	Sunday	Chromosomal	2. Disorders with multifactorial inheritance	N.AMER
		anomalies II	(Polygenic disorders)	
			Diabetes mellitus	
			Hypertension	
			• Gout	
			 Schizophrenia (Psychiatry) 	
			Congenital heart diseaseetc.	
33	Tuesday	Clinical	DNA fingerprinting in forensic medicine	N.AMER
	,	implications of	2.Use of repetitive sequence length polymorphism in	
		Molecular	the diagnosis of congenital diseases	
		genetics I		
24	T I	Methods of	1 · (
34	Thursday	gene transfer to	<i>1.ex vivo</i> technique	N.AMER
		human	2. <i>in vivo</i> technique	
		chromosome I	3.Gene transfer vehicle	
35	Sunday	Gene therapy I	1. Types of gene therapy	N.AMER
	,	1.5	2. Gene therapy attempts for cystic fibrosis	
			3. Gene therapy attempts for Duchenne muscular	
			dystrophy	
36	Tuesday	Gene therapy II		N.AMER
37	Thursday	Human	Goals of the human genome project	N.AMER
		genome I	2.Sequencing the human genome	
38	Sunday	Human	Goals of the human genome project	N.AMER
		genome li	2.Sequencing the human genome	
	Tuesday	REVIEW		N.AMER
	Thursday	FINALS		